Seminars of the Focus Area Complex Systems

Prof. Dr. C. Beta, Prof. Dr. K. Dethloff, Prof. Dr. R. Engbert, Prof. Dr. M. Holschneider, Prof. Dr. W. Huisinga, Prof. Dr. Ralf Metzler, Prof. Dr. A. Pikovsky, Prof. Dr. S. Reich, Prof. Dr. M. Rosenblum, Prof. Dr. G. Rüdiger, Prof. Dr. T. Scheffer, Prof. Dr. F. Scherbaum, Prof. Dr. J. Selbig, Prof. Dr. F. Spahn


Speaker: Yakov Pesin, Penn Sate University, USA

Title: Stable ergodicity and Lyapunov exponents

Time: Thu, Apr 17, 2014, 1pm

Place: bldg 28, room 2.100

I will introduce the concept of stable ergodicity in smooth dynamics and I will discuss the stable ergodicity problem for partially hyperbolic systems both conservative and dissipative. I will state the Pugh-Shub Stable Ergodicity conjecture and will outline two different approaches to it. The first one is due to the original work of Pugh and Shub. The second approach originated in work of Alves, Bonatti and Viana as well as Burns, Dolgopyat and myself and is based on the study of Lyapunov exponents in the central direction of the system. This approach can also be used to study stable ergodicity of partially hyperbolic attractors. As a by-product of this approach we obtain some criteria for existence of Sinai-Ruelle-Bowen measures for these attractors.

Back to the seminar schedule

Past NLD Seminars (1994-2007) & (2008 ...)

Students' seminar: Theoretical Physics, PIK, Modeling & TSA Berlin-Potsdam-Colloquia: PhysGesellschaft Berlin, TU Berlin, Pro Physik, AIP, AEI, MPI-KGF, GFZ, HMI, PIK, AWI, Max Planck Institute for the History of Science, Mathematik, DPG Disputationen, & Vorschau UP

Udo Schwarz, Zentrum für Dynamik komplexer Systeme,
Universität Potsdam, Campus Golm Karl-Liebknecht-Str. 24, 14476 Potsdam, building 28, room 2.107
Phone: (+49-331) 977-1658, Fax : (+49-331) 977-1045

Email: Udo.Schwarz AT

DFG SFB 1294

DFG Sonderforschungsbereich 1294 Data assimilation

DFG SPP 1488

DFG Schwerpunktprogramm 1488 Planetmag

News: odeint C++ library

Check out boost::odeint – our fast and flexible C++ library for integrating differential equations!